# An Analytical Framework to Assess Green Transition Jobs in South Africa

Katherine Davidson, Ariane De Lannoy, Joanna Grotte, Arindam Jana, Anda David, and Murray Leibbrandt.









### Introduction

- A robust response to the climate crisis will mean a great deal of change including global shifts away from carbon intensive modes of production toward a greener economy.
- South Africa has committed to achieving a reduction of 350-420 million tonnes of  $CO_2$  by 2030 which will have significant impacts on employment.
- South Africa's high unemployment, poverty and inequality rates compel the development of policy to ensure the transition is just.
- This research seeks to provide a holistic, nuanced framework for analysing and contextualising the potential employment effects of the green transition by bringing together two approaches to estimating green jobs:
  - **1. Bottom-up Approach**
  - 2. Top-down Approach

## **Bottom-up Approach**

- Involves estimating green employment based on whether a worker's occupation is defined as green. What is a green occupation?
- Dierdorff et al (2009)'s work on green occupations provided the foundation for the majority of work that has occurred since. They defined three categories of green transition occupations:
  - **1. Green Increased Demand Occupations**: The impact of green economy activities and technologies is an increase in the employment demand for an existing occupation.
  - **2. Green Enhanced Skills Occupations:** The impact of green economy activities and technologies results in a significant change to the work and worker requirements of an existing occupation.
  - **3. New and Emerging Green Occupations:** The impact of green economy activities and technologies is sufficient to create the need for unique work and worker requirements, resulting in the generation of a new occupation.
- Follow up work done by these authors defined a list of green tasks performed by workers in occupations found on the Green Enhanced Skill and New and Emerging Green Occupation lists.
- This work has produced two main approaches to defining a green occupation. Definitions that centre:
  - The impact of the green transition on occupations
  - The impact of the work done in occupations on the environment

## **Occupational Classification Systems**

| Occupation classification system                                   | m Description                                                                                                                                                                                                                                                                                                                                                                             |  |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Organising Framework of<br>Occupations (OFO)                       | <ul> <li>Created by the Department of Higher Education and Training (DHET) based on the 2008 version of the International Standard Classification of Occupations (ISCO).</li> <li>Latest version is from 2021.</li> <li>South African labour market data does not use this system to identify occupations.</li> <li>Most detailed occupational codes are at the 6-digit level.</li> </ul> |  |
| South African Standard<br>Classification of Occupations<br>(SASCO) | <ul> <li>Created by Statistics South Africa.</li> <li>The 2003 version of this system is used to identify occupations in labour market data.</li> <li>The SASCO 2003 version is based on the 1988 version of the ISCO.</li> <li>Most detailed occupational codes are at the 4-digit level.</li> </ul>                                                                                     |  |

## Methodology

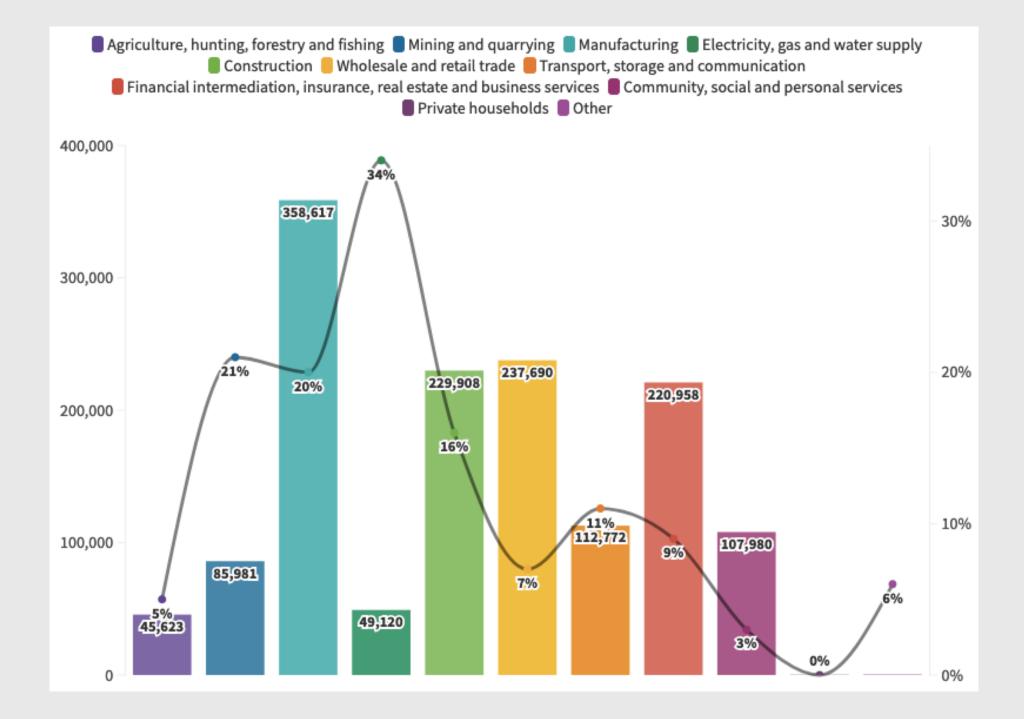
|   | Steps Worked Example                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Crosswalk or match the 8-digit O*NET green<br>transition occupations classifications to the 6-digit • Bus Drivers, Transit and Intercity, code 53-3021.00 is identified as a<br>OFO system. • This can be matched to Bus Driver, code 733101, in the OFO.                                                                                                                                                                                                                   |
| 2 | <ul> <li>Calculate an 'occupational greenness' measure, which is the proportion of the 6-digit OFO green occupations</li> <li>733101 Bus Driver is part of the 7331 Bus and Tram Drivers minor group OFO occupation code.</li> <li>This minor group occupation code has three 6-digit occupation codes in total, including Bus Drivers.</li> <li>Therefore, the proportion of green transition occupations assigned to 7331 Bus and Tram Drivers is 0.333 (1/3).</li> </ul> |
| 3 | <ul> <li>Match 4-digit OFO occupation codes to 4-digit SASCO codes using the crosswalk developed by DHET.</li> <li>The DHET crosswalk matches 7331 Bus and Tram Drivers OFO occupation code to 8323 Bus and Tram Drivers 4-digit SASCO occupation code.</li> <li>Conclude that the proportion of green transition occupations in SASCO 4-digit occupation code 8323 Bus and Tram Drivers is 0.333.</li> </ul>                                                               |
| 4 | Multiply the greenness measure of the 4-digit SASCO • If there are 23 000 workers employed in the 8323 Bus and Tram Drivers SASCO occupation code, we estimate that there 6 900 (23 000 x 0.333) GID occupation workers within that occupation code.                                                                                                                                                                                                                        |

### Limitations

#### **Outdated occupation classification systems:**

• SASCO used for labour market data is from 2003 and is based on the ISCO 1988.

#### Use of the green transition occupations:


- These were developed in 2009 and for the United States labour market.
- Matching the green transition occupations to the OFO occupation codes should help to lessen the likelihood of an occupation not existing in the South African context.

#### An occupation's greenness will be consistent across industries and geographies:

- For example, a *logistics manager* in mining in Mpumalanga will have the same 'greenness measure' as a *logistics manager* in agriculture in the Western Cape as their occupations codes are the same despite being employed in different industries and geographies.
- This will be true irrespective of the green occupation definition used.
- Highlights that green occupations alone provide an incomplete picture.

### **Green Transition Employment**

|                                      | <b>Green Transition Employment</b> | <b>Proportion of Total Employment</b> |
|--------------------------------------|------------------------------------|---------------------------------------|
| Green Increased Demand               | 765 436                            | 4.6%                                  |
| Green New and Emerging               | 160 241                            | 1.0%                                  |
| Green Enhanced Skill                 | 580 471                            | 3.5%                                  |
| Total Green Transition<br>(adjusted) | 1 449 370                          | 8.7%                                  |



|               | Green Increased<br>Demand | Green New and<br>Emerging | Green<br>Enhanced Skill | Total Transition Green<br>after adjustment | Total Employed<br>Population |
|---------------|---------------------------|---------------------------|-------------------------|--------------------------------------------|------------------------------|
| African/Black | 72%                       | 54%                       | 68%                     | 69%                                        | 75%                          |
| Coloured      | 11%                       | 9%                        | 9%                      | 10%                                        | 10%                          |
| Indian/Asian  | 3%                        | 6%                        | 4%                      | 4%                                         | 3%                           |
| White         | 13%                       | 31%                       | 20%                     | 17%                                        | 12%                          |
|               |                           |                           |                         |                                            |                              |
| Male          | 88%                       | 77%                       | 81%                     | 84%                                        | 56%                          |
| Female        | 12%                       | 23%                       | 19%                     | 16%                                        | 44%                          |

## **Top-down Approach**

- Top-down approaches provide an environmental profile of employment based on **industry.**
- Typically, this involves identifying an industry as green based on **output or production processes**:
  - Production of renewable energy
  - Production of environmental goods and services
- Other strand of the literature focuses on **defining brown jobs**. Most often placing industries on a spectrum from green to brown. This can be done in various ways- we estimate two measures:
  - pollution intensity: total carbon emissions per industry
  - emissions intensity: carbon emissions per worker for each industry

### **Environmental Costs and Carbon Emissions**

#### • Short history of methodological development:

- Nordhaus introduced the concept of integrated assessment models (IAMs)
- Stern Review argued that the costs of inaction on climate change would be significantly higher than the costs of mitigation.
- Increasing interest in methodologies to estimate carbon emissions.
- The majority of these methodologies are based around the energy use accounting framework which is only able to account for the energy component
- More recent methodologies assess carbon emissions within the consumption and production processes of an economy.

#### • This paper uses EXIOBASE 3 Tables:

- Uses a variant of established Input-Output Analysis models: the Multi-Region Input-Output (MRIO) Materials Flows analysis.
- Recent innovations in data collection have allowed for the incorporation of environmental factors as inputs for production and consumption processes within the IO tables.

### Extracting sectoral carbon emissions

At every time period, EXIOBASE 3 tables describe the global inter-industrial sector material flows within and across countries for k countries with a transaction matrix Z:

$$Z = egin{pmatrix} Z_{1,1} & Z_{1,2} & \cdots & Z_{1,k} \ Z_{2,1} & Z_{2,2} & \cdots & Z_{2,k} \ dots & dots & \ddots & dots \ Z_{k,1} & Z_{k,2} & \cdots & Z_{k,k} \end{pmatrix}$$

Each submatrix on the main diagonal  $Z_{i,i}$  represents the domestic interactions for each industry *n*. The off-diagonal matrices  $Z_{i,j}$  describe the trade from region *i* to region *j* (with *i*, *j* = 1, 2...*k*) for each industrial sector. This allows for the definition of a global demand *Y*:

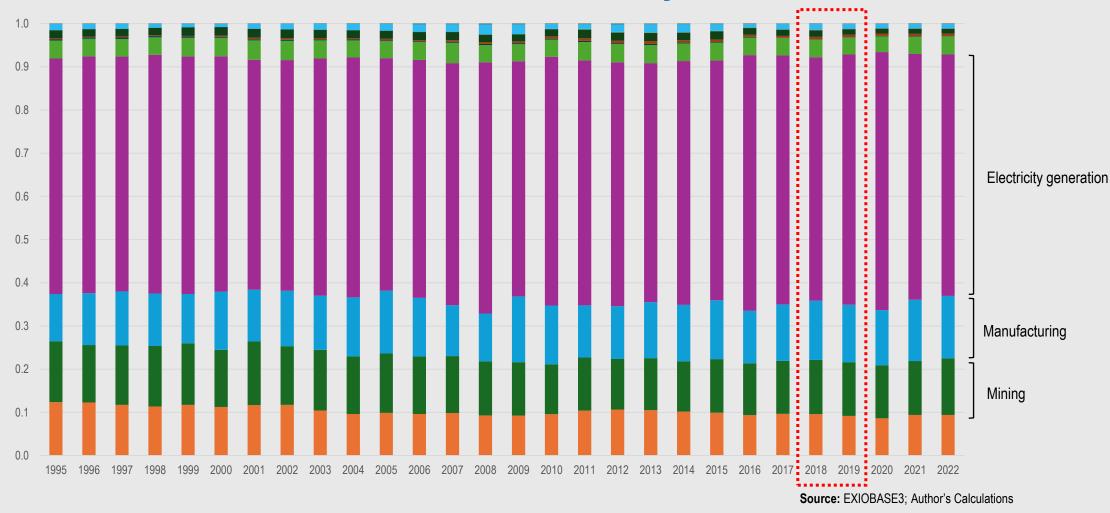
|   | $(Y_{1,1})$ | $Y_{1,2}$ |    | $Y_{1,k}$ |
|---|-------------|-----------|----|-----------|
| , | $Y_{2,1}$   | $Y_{2,2}$ |    | $Y_{2,k}$ |
| = | :           | ÷         | ۰. | :         |
|   | $Y_{k,1}$   | $Y_{k,2}$ |    | $Y_{k,k}$ |

Final demand satisfied by domestic production is represented by the main diagonal  $Y_{i, i}$  and direct import to final demand from region *i* to country *j* by  $Y_{i,j}$ . Again, like the transaction matrix, there are *k* industrial sectors being considered.

The global economy is then represented as x, where x is the total output for the regions considered, and e represents the summation vector:

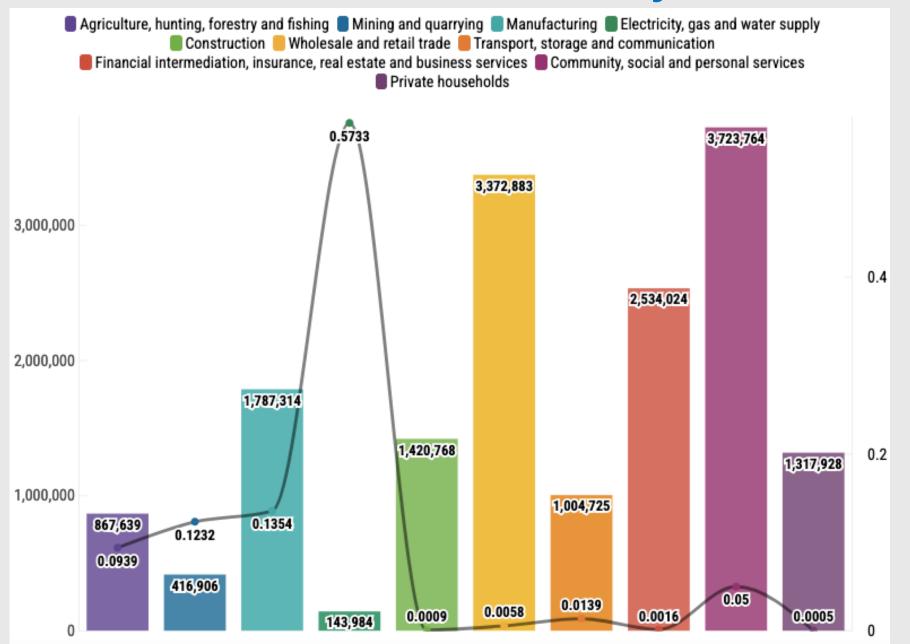
$$x = Ze + Ye$$

Following the environmental cost model of IO analysis, we extract a matrix C, where,  $C_{i,k}$  represents the net carbon emissions from the global output function x, i represents the region, and k represents the industrial sectors. From this matrix C, we extract the column vector where i represents South Africa.

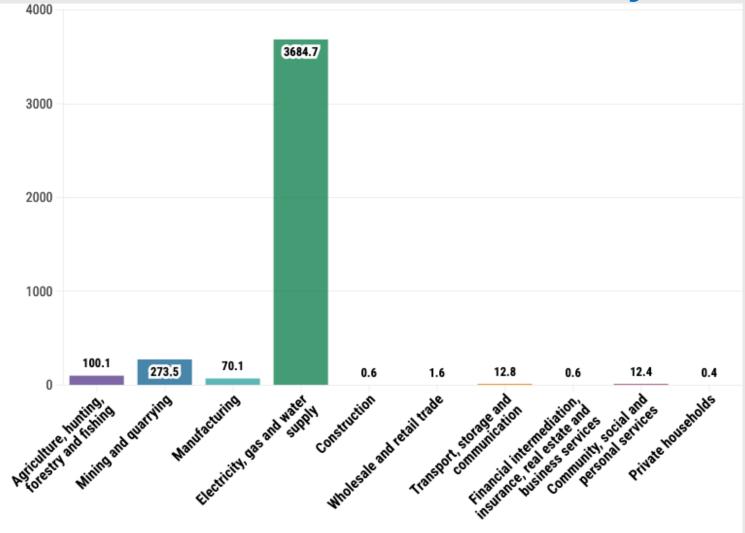

### Estimating SA Carbon Footprint (1995-2022)



SA carbon emissions strongly linked to coal-powered electricity generation – averaging upwards of 55% of total emissions in the post-Apartheid period, peaking at ~305 mT in 2020.


...other important sectors (e.g., manufacturing, mining) show steady and stable growth in their emissions, following their relative shares of economic output.

### **Pollution Intensity**




Using these estimates of carbon emissions, we calculate *pollution intensity*, defined as the sectoral share of carbon emissions – this measure this is a measure of how much damaging the sector is in relation to the rest of the economy.

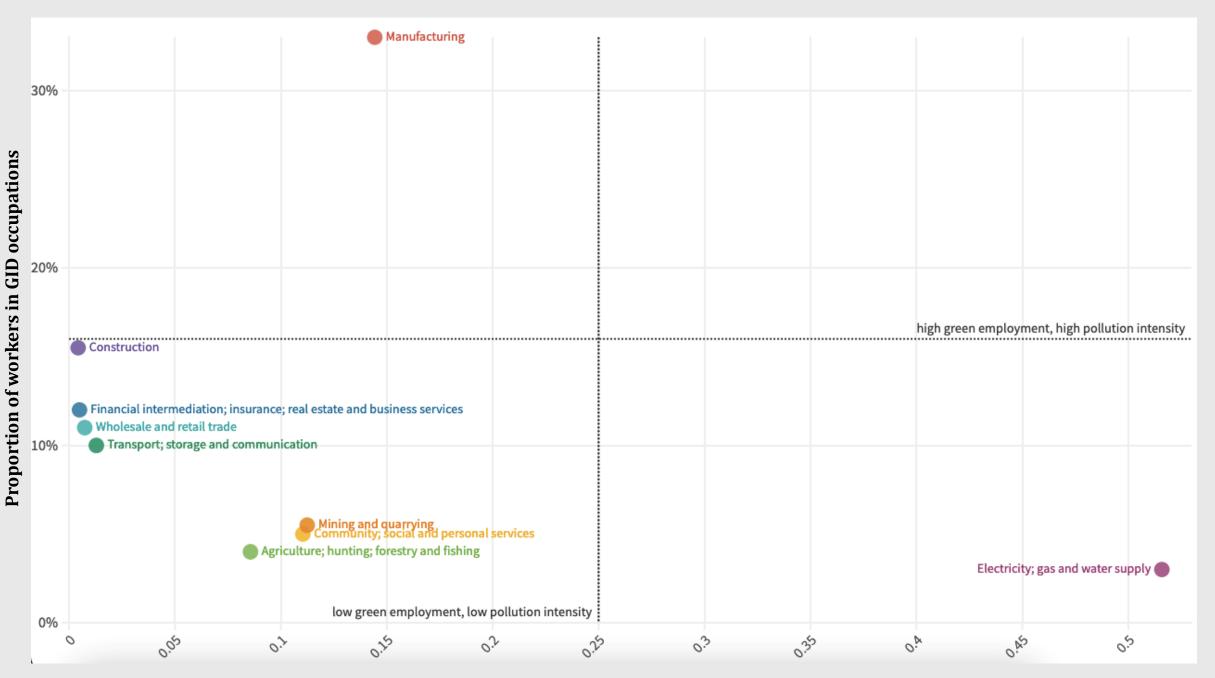
### **Pollution Intensity**



### **Emissions Intensity**



Emissions intensity, defined as a sector's emissions per worker – conceptually, this measures the environmental impact of economic activities, particularly in labour-intensive industries, highlighting how efficiently a sector is managing its emissions relative to its workforce.


### The Framework

|                                               | How heavily polluting is the industry? |                                      |
|-----------------------------------------------|----------------------------------------|--------------------------------------|
| High proportion of green<br>employment        |                                        |                                      |
|                                               | Greener Occupation, Greener Industry   | Greener Occupation, Browner Industry |
| Green occupations                             | Browner Occupation, Greener Industry   | Browner Occupation, Browner Industry |
| Low proportion of green occupation employment |                                        |                                      |

### Percentage of workers by Green Increased Demand occupation and Emissions Intensity

|                           | Below national emissions<br>intensity | Above national emissions<br>intensity |
|---------------------------|---------------------------------------|---------------------------------------|
| 100% GID occupations      | 2%                                    | 7%                                    |
| 50% GID occupations       | 1%                                    | 2%                                    |
| Below 30% GID occupations | 1%                                    | 2%                                    |

#### Pollution intensity of the industry



### **Conclusions and Next Steps**

- By bringing these two dimensions together, we can assess the extent to which different workers may be negatively affected by the green transition.
- Forthcoming work
  - A forthcoming paper with the HSRC to explore possibilities of spatialising the framework using Spatial Tax Panel data.
  - Public release of the crosswalk and the bottom-up approach greenness measure?
  - Indicators of green transition employment on the Explorer?
- Future work
  - Carbon emission estimates at more detailed industrial sectors.
  - Trend analysis to differentiate between consistent and once off phenomena.
  - Expand on the demographic profile of workers identified by the framework.